Computer Science > Computers and Society
[Submitted on 30 Oct 2023]
Title:"Just a little bit on the outside for the whole time": Social belonging confidence and the persistence of Machine Learning and Artificial Intelligence students
View PDFAbstract:The growing field of machine learning (ML) and artificial intelligence (AI) presents a unique and unexplored case within persistence research, meaning it is unclear how past findings from engineering will apply to this developing field. We conduct an exploratory study to gain an initial understanding of persistence in this field and identify fruitful directions for future work. One factor that has been shown to predict persistence in engineering is belonging; we study belonging through the lens of confidence, and discuss how attention to social belonging confidence may help to increase diversity in the profession. In this research paper, we conduct a small set of interviews with students in ML/AI courses. Thematic analysis of these interviews revealed initial differences in how students see a career in ML/AI, which diverge based on interest and programming confidence. We identified how exposure and initiation, the interpretation of ML and AI field boundaries, and beliefs of the skills required to succeed might influence students' intentions to persist. We discuss differences in how students describe being motivated by social belonging and the importance of close mentorship. We motivate further persistence research in ML/AI with particular focus on social belonging and close mentorship, the role of intersectional identity, and introductory ML/AI courses.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.