Mathematics > Optimization and Control
[Submitted on 15 Nov 2023]
Title:Closed-Loop Identification of Stabilized Models Using Dual Input-Output Parameterization
View PDFAbstract:This paper introduces a dual input-output parameterization (dual IOP) for the identification of linear time-invariant systems from closed-loop data. It draws inspiration from the recent input-output parameterization developed to synthesize a stabilizing controller. The controller is parameterized in terms of closed-loop transfer functions, from the external disturbances to the input and output of the system, constrained to lie in a given subspace. Analogously, the dual IOP method parameterizes the unknown plant with analogous closed-loop transfer functions, also referred to as dual parameters. In this case, these closed-loop transfer functions are constrained to lie in an affine subspace guaranteeing that the identified plant is \emph{stabilized} by the known controller. Compared with existing closed-loop identification techniques guaranteeing closed-loop stability, such as the dual Youla parameterization, the dual IOP neither requires a doubly-coprime factorization of the controller nor a nominal plant that is stabilized by the controller. The dual IOP does not depend on the order and the state-space realization of the controller either, as in the dual system-level parameterization. Simulation shows that the dual IOP outperforms the existing benchmark methods.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.