Computer Science > Information Retrieval
[Submitted on 10 Nov 2023]
Title:Citation Recommendation on Scholarly Legal Articles
View PDFAbstract:Citation recommendation is the task of finding appropriate citations based on a given piece of text. The proposed datasets for this task consist mainly of several scientific fields, lacking some core ones, such as law. Furthermore, citation recommendation is used within the legal domain to identify supporting arguments, utilizing non-scholarly legal articles. In order to alleviate the limitations of existing studies, we gather the first scholarly legal dataset for the task of citation recommendation. Also, we conduct experiments with state-of-the-art models and compare their performance on this dataset. The study suggests that, while BM25 is a strong benchmark for the legal citation recommendation task, the most effective method involves implementing a two-step process that entails pre-fetching with BM25+, followed by re-ranking with SciNCL, which enhances the performance of the baseline from 0.26 to 0.30 MAP@10. Moreover, fine-tuning leads to considerable performance increases in pre-trained models, which shows the importance of including legal articles in the training data of these models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.