Mathematics > Combinatorics
[Submitted on 8 Nov 2023]
Title:Computing pivot-minors
View PDFAbstract:A graph $G$ contains a graph $H$ as a pivot-minor if $H$ can be obtained from $G$ by applying a sequence of vertex deletions and edge pivots. Pivot-minors play an important role in the study of rank-width. Pivot-minors have mainly been studied from a structural perspective. In this paper we perform the first systematic computational complexity study of pivot-minors. We first prove that the Pivot-Minor problem, which asks if a given graph $G$ contains a pivot-minor isomorphic to a given graph $H$, is NP-complete. If $H$ is not part of the input, we denote the problem by $H$-Pivot-Minor. We give a certifying polynomial-time algorithm for $H$-Pivot-Minor when (1) $H$ is an induced subgraph of $P_3+tP_1$ for some integer $t\geq 0$, (2) $H=K_{1,t}$ for some integer $t\geq 1$, or (3) $|V(H)|\leq 4$ except when $H \in \{K_4,C_3+ P_1\}$. Let ${\cal F}_H$ be the set of induced-subgraph-minimal graphs that contain a pivot-minor isomorphic to $H$. To prove the above statement, we either show that there is an integer $c_H$ such that all graphs in ${\cal F}_H$ have at most $c_H$ vertices, or we determine ${\cal F}_H$ precisely, for each of the above cases.
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.