Computer Science > Sound
[Submitted on 6 Nov 2023]
Title:A Foundation Model for Music Informatics
View PDFAbstract:This paper investigates foundation models tailored for music informatics, a domain currently challenged by the scarcity of labeled data and generalization issues. To this end, we conduct an in-depth comparative study among various foundation model variants, examining key determinants such as model architectures, tokenization methods, temporal resolution, data, and model scalability. This research aims to bridge the existing knowledge gap by elucidating how these individual factors contribute to the success of foundation models in music informatics. Employing a careful evaluation framework, we assess the performance of these models across diverse downstream tasks in music information retrieval, with a particular focus on token-level and sequence-level classification. Our results reveal that our model demonstrates robust performance, surpassing existing models in specific key metrics. These findings contribute to the understanding of self-supervised learning in music informatics and pave the way for developing more effective and versatile foundation models in the field. A pretrained version of our model is publicly available to foster reproducibility and future research.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.