Computer Science > Data Structures and Algorithms
[Submitted on 6 Nov 2023]
Title:Nibbling at Long Cycles: Dynamic (and Static) Edge Coloring in Optimal Time
View PDFAbstract:We consider the problem of maintaining a $(1+\epsilon)\Delta$-edge coloring in a dynamic graph $G$ with $n$ nodes and maximum degree at most $\Delta$. The state-of-the-art update time is $O_\epsilon(\text{polylog}(n))$, by Duan, He and Zhang [SODA'19] and by Christiansen [STOC'23], and more precisely $O(\log^7 n/\epsilon^2)$, where $\Delta = \Omega(\log^2 n / \epsilon^2)$.
The following natural question arises: What is the best possible update time of an algorithm for this task? More specifically, \textbf{ can we bring it all the way down to some constant} (for constant $\epsilon$)? This question coincides with the \emph{static} time barrier for the problem: Even for $(2\Delta-1)$-coloring, there is only a naive $O(m \log \Delta)$-time algorithm.
We answer this fundamental question in the affirmative, by presenting a dynamic $(1+\epsilon)\Delta$-edge coloring algorithm with $O(\log^4 (1/\epsilon)/\epsilon^9)$ update time, provided $\Delta = \Omega_\epsilon(\text{polylog}(n))$. As a corollary, we also get the first linear time (for constant $\epsilon$) \emph{static} algorithm for $(1+\epsilon)\Delta$-edge coloring; in particular, we achieve a running time of $O(m \log (1/\epsilon)/\epsilon^2)$.
We obtain our results by carefully combining a variant of the \textsc{Nibble} algorithm from Bhattacharya, Grandoni and Wajc [SODA'21] with the subsampling technique of Kulkarni, Liu, Sah, Sawhney and Tarnawski [STOC'22].
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.