Computer Science > Information Theory
[Submitted on 7 Nov 2023]
Title:Improved MDL Estimators Using Fiber Bundle of Local Exponential Families for Non-exponential Families
View PDFAbstract:Minimum Description Length (MDL) estimators, using two-part codes for universal coding, are analyzed. For general parametric families under certain regularity conditions, we introduce a two-part code whose regret is close to the minimax regret, where regret of a code with respect to a target family M is the difference between the code length of the code and the ideal code length achieved by an element in M. This is a generalization of the result for exponential families by Grünwald. Our code is constructed by using an augmented structure of M with a bundle of local exponential families for data description, which is not needed for exponential families. This result gives a tight upper bound on risk and loss of the MDL estimators based on the theory introduced by Barron and Cover in 1991. Further, we show that we can apply the result to mixture families, which are a typical example of non-exponential families.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.