Computer Science > Machine Learning
[Submitted on 31 Oct 2023 (v1), last revised 28 Apr 2024 (this version, v2)]
Title:Stochastic Gradient Descent for Gaussian Processes Done Right
View PDFAbstract:As is well known, both sampling from the posterior and computing the mean of the posterior in Gaussian process regression reduces to solving a large linear system of equations. We study the use of stochastic gradient descent for solving this linear system, and show that when \emph{done right} -- by which we mean using specific insights from the optimisation and kernel communities -- stochastic gradient descent is highly effective. To that end, we introduce a particularly simple \emph{stochastic dual descent} algorithm, explain its design in an intuitive manner and illustrate the design choices through a series of ablation studies. Further experiments demonstrate that our new method is highly competitive. In particular, our evaluations on the UCI regression tasks and on Bayesian optimisation set our approach apart from preconditioned conjugate gradients and variational Gaussian process approximations. Moreover, our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
Submission history
From: David Janz [view email][v1] Tue, 31 Oct 2023 16:15:13 UTC (1,664 KB)
[v2] Sun, 28 Apr 2024 09:48:23 UTC (1,991 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.