Computer Science > Computational Complexity
[Submitted on 29 Oct 2023 (v1), last revised 25 Jan 2024 (this version, v2)]
Title:Simple Constructions of Unique Neighbor Expanders from Error-correcting Codes
View PDF HTML (experimental)Abstract:In this note, we give very simple constructions of unique neighbor expander graphs starting from spectral or combinatorial expander graphs of mild expansion. These constructions and their analysis are simple variants of the constructions of LDPC error-correcting codes from expanders, given by Sipser-Spielman [SS96] (and Tanner [Tan81]), and their analysis. We also show how to obtain expanders with many unique neighbors using similar ideas.
There were many exciting results on this topic recently, starting with Asherov-Dinur [AD23] and Hsieh-McKenzie-Mohanty-Paredes [HMMP23], who gave a similar construction of unique neighbor expander graphs, but using more sophisticated ingredients (such as almost-Ramanujan graphs) and a more involved analysis. Subsequent beautiful works of Cohen-Roth-TaShma [CRT23] and Golowich [Gol23] gave even stronger objects (lossless expanders), but also using sophisticated ingredients.
The main contribution of this work is that we get much more elementary constructions of unique neighbor expanders and with a simpler analysis.
Submission history
From: Noga Ron-Zewi [view email][v1] Sun, 29 Oct 2023 20:53:45 UTC (14 KB)
[v2] Thu, 25 Jan 2024 21:53:37 UTC (14 KB)
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.