Mathematics > Numerical Analysis
[Submitted on 30 Oct 2023]
Title:A linear doubly stabilized Crank-Nicolson scheme for the Allen-Cahn equation with a general mobility
View PDFAbstract:In this paper, a linear second order numerical scheme is developed and investigated for the Allen-Cahn equation with a general positive mobility. In particular, our fully discrete scheme is mainly constructed based on the Crank-Nicolson formula for temporal discretization and the central finite difference method for spatial approximation, and two extra stabilizing terms are also introduced for the purpose of improving numerical stability. The proposed scheme is shown to unconditionally preserve the maximum bound principle (MBP) under mild restrictions on the stabilization parameters, which is of practical importance for achieving good accuracy and stability simultaneously. With the help of uniform boundedness of the numerical solutions due to MBP, we then successfully derive $H^{1}$-norm and $L^{\infty}$-norm error estimates for the Allen-Cahn equation with a constant and a variable mobility, respectively. Moreover, the energy stability of the proposed scheme is also obtained in the sense that the discrete free energy is uniformly bounded by the one at the initial time plus a {\color{black}constant}. Finally, some numerical experiments are carried out to verify the theoretical results and illustrate the performance of the proposed scheme with a time adaptive strategy.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.