Computer Science > Information Theory
[Submitted on 27 Oct 2023]
Title:DPSS-based Codebook Design for Near-Field XL-MIMO Channel Estimation
View PDFAbstract:Future sixth-generation (6G) systems are expected to leverage extremely large-scale multiple-input multiple-output (XL-MIMO) technology, which significantly expands the range of the near-field region. While accurate channel estimation is essential for beamforming and data detection, the unique characteristics of near-field channels pose additional challenges to the effective acquisition of channel state information. In this paper, we propose a novel codebook design, which allows efficient near-field channel estimation with significantly reduced codebook size. Specifically, we consider the eigen-problem based on the near-field electromagnetic wave transmission model. Moreover, we derive the general form of the eigenvectors associated with the near-field channel matrix, revealing their noteworthy connection to the discrete prolate spheroidal sequence (DPSS). Based on the proposed near-field codebook design, we further introduce a two-step channel estimation scheme. Simulation results demonstrate that the proposed codebook design not only achieves superior sparsification performance of near-field channels with a lower leakage effect, but also significantly improves the accuracy in compressive sensing channel estimation.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.