Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Oct 2023 (v1), last revised 10 Jun 2024 (this version, v4)]
Title:SAM-CLIP: Merging Vision Foundation Models towards Semantic and Spatial Understanding
View PDF HTML (experimental)Abstract:The landscape of publicly available vision foundation models (VFMs), such as CLIP and Segment Anything Model (SAM), is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their pre-training objectives. For instance, CLIP excels in semantic understanding, while SAM specializes in spatial understanding for segmentation. In this work, we introduce a simple recipe to efficiently merge VFMs into a unified model that absorbs their expertise. Our method integrates techniques of multi-task learning, continual learning, and distillation. Further, it demands significantly less computational cost compared to traditional multi-task training from scratch, and it only needs a small fraction of the pre-training datasets that were initially used to train individual models. By applying our method to SAM and CLIP, we obtain SAM-CLIP: a unified model that combines the capabilities of SAM and CLIP into a single vision transformer. Compared with deploying SAM and CLIP independently, our merged model, SAM-CLIP, reduces storage and compute costs for inference, making it well-suited for edge device applications. We show that SAM-CLIP not only retains the foundational strengths of SAM and CLIP, but also introduces synergistic functionalities, notably in zero-shot semantic segmentation, where SAM-CLIP establishes new state-of-the-art results on 5 benchmarks. It outperforms previous models that are specifically designed for this task by a large margin, including +6.8% and +5.9% mean IoU improvement on Pascal-VOC and COCO-Stuff datasets, respectively.
Submission history
From: Haoxiang Wang [view email][v1] Mon, 23 Oct 2023 19:21:57 UTC (6,394 KB)
[v2] Mon, 20 Nov 2023 00:56:15 UTC (8,063 KB)
[v3] Wed, 22 May 2024 05:53:11 UTC (9,140 KB)
[v4] Mon, 10 Jun 2024 19:19:16 UTC (9,140 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.