Computer Science > Robotics
[Submitted on 19 Oct 2023 (v1), last revised 19 Mar 2024 (this version, v2)]
Title:PGA: Personalizing Grasping Agents with Single Human-Robot Interaction
View PDF HTML (experimental)Abstract:Language-Conditioned Robotic Grasping (LCRG) aims to develop robots that comprehend and grasp objects based on natural language instructions. While the ability to understand personal objects like my wallet facilitates more natural interaction with human users, current LCRG systems only allow generic language instructions, e.g., the black-colored wallet next to the laptop. To this end, we introduce a task scenario GraspMine alongside a novel dataset aimed at pinpointing and grasping personal objects given personal indicators via learning from a single human-robot interaction, rather than a large labeled dataset. Our proposed method, Personalized Grasping Agent (PGA), addresses GraspMine by leveraging the unlabeled image data of the user's environment, called Reminiscence. Specifically, PGA acquires personal object information by a user presenting a personal object with its associated indicator, followed by PGA inspecting the object by rotating it. Based on the acquired information, PGA pseudo-labels objects in the Reminiscence by our proposed label propagation algorithm. Harnessing the information acquired from the interactions and the pseudo-labeled objects in the Reminiscence, PGA adapts the object grounding model to grasp personal objects. This results in significant efficiency while previous LCRG systems rely on resource-intensive human annotations -- necessitating hundreds of labeled data to learn my wallet. Moreover, PGA outperforms baseline methods across all metrics and even shows comparable performance compared to the fully-supervised method, which learns from 9k annotated data samples. We further validate PGA's real-world applicability by employing a physical robot to execute GrsapMine. Code and data are publicly available at this https URL.
Submission history
From: Junghyun Kim [view email][v1] Thu, 19 Oct 2023 07:54:30 UTC (7,176 KB)
[v2] Tue, 19 Mar 2024 11:09:12 UTC (7,179 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.