Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Oct 2023]
Title:Machine Learning for Leaf Disease Classification: Data, Techniques and Applications
View PDFAbstract:The growing demand for sustainable development brings a series of information technologies to help agriculture production. Especially, the emergence of machine learning applications, a branch of artificial intelligence, has shown multiple breakthroughs which can enhance and revolutionize plant pathology approaches. In recent years, machine learning has been adopted for leaf disease classification in both academic research and industrial applications. Therefore, it is enormously beneficial for researchers, engineers, managers, and entrepreneurs to have a comprehensive view about the recent development of machine learning technologies and applications for leaf disease detection. This study will provide a survey in different aspects of the topic including data, techniques, and applications. The paper will start with publicly available datasets. After that, we summarize common machine learning techniques, including traditional (shallow) learning, deep learning, and augmented learning. Finally, we discuss related applications. This paper would provide useful resources for future study and application of machine learning for smart agriculture in general and leaf disease classification in particular.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.