Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Oct 2023 (v1), last revised 2 Sep 2024 (this version, v3)]
Title:DORec: Decomposed Object Reconstruction and Segmentation Utilizing 2D Self-Supervised Features
View PDF HTML (experimental)Abstract:Recovering 3D geometry and textures of individual objects is crucial for many robotics applications, such as manipulation, pose estimation, and autonomous driving. However, decomposing a target object from a complex background is challenging. Most existing approaches rely on costly manual labels to acquire object instance perception. Recent advancements in 2D self-supervised learning offer new prospects for identifying objects of interest, yet leveraging such noisy 2D features for clean decomposition remains difficult. In this paper, we propose a Decomposed Object Reconstruction (DORec) network based on neural implicit representations. Our key idea is to use 2D self-supervised features to create two levels of masks for supervision: a binary mask for foreground regions and a K-cluster mask for semantically similar regions. These complementary masks result in robust decomposition. Experimental results on different datasets show DORec's superiority in segmenting and reconstructing diverse foreground objects from varied backgrounds enabling downstream tasks such as pose estimation.
Submission history
From: Jun Wu [view email][v1] Tue, 17 Oct 2023 09:21:29 UTC (10,974 KB)
[v2] Thu, 19 Oct 2023 14:16:49 UTC (6,710 KB)
[v3] Mon, 2 Sep 2024 08:37:29 UTC (10,581 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.