Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Oct 2023 (v1), last revised 22 Oct 2023 (this version, v2)]
Title:DANAA: Towards transferable attacks with double adversarial neuron attribution
View PDFAbstract:While deep neural networks have excellent results in many fields, they are susceptible to interference from attacking samples resulting in erroneous judgments. Feature-level attacks are one of the effective attack types, which targets the learnt features in the hidden layers to improve its transferability across different models. Yet it is observed that the transferability has been largely impacted by the neuron importance estimation results. In this paper, a double adversarial neuron attribution attack method, termed `DANAA', is proposed to obtain more accurate feature importance estimation. In our method, the model outputs are attributed to the middle layer based on an adversarial non-linear path. The goal is to measure the weight of individual neurons and retain the features that are more important towards transferability. We have conducted extensive experiments on the benchmark datasets to demonstrate the state-of-the-art performance of our method. Our code is available at: this https URL
Submission history
From: Zhibo Jin [view email][v1] Mon, 16 Oct 2023 14:11:32 UTC (269 KB)
[v2] Sun, 22 Oct 2023 16:06:00 UTC (272 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.