Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Oct 2023]
Title:Real-Time Traffic Sign Detection: A Case Study in a Santa Clara Suburban Neighborhood
View PDFAbstract:This research project aims to develop a real-time traffic sign detection system using the YOLOv5 architecture and deploy it for efficient traffic sign recognition during a drive in a suburban neighborhood. The project's primary objectives are to train the YOLOv5 model on a diverse dataset of traffic sign images and deploy the model on a suitable hardware platform capable of real-time inference. The project will involve collecting a comprehensive dataset of traffic sign images. By leveraging the trained YOLOv5 model, the system will detect and classify traffic signs from a real-time camera on a dashboard inside a vehicle. The performance of the deployed system will be evaluated based on its accuracy in detecting traffic signs, real-time processing speed, and overall reliability. During a case study in a suburban neighborhood, the system demonstrated a notable 96% accuracy in detecting traffic signs. This research's findings have the potential to improve road safety and traffic management by providing timely and accurate real-time information about traffic signs and can pave the way for further research into autonomous driving.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.