Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 12 Oct 2023]
Title:Fast Word Error Rate Estimation Using Self-Supervised Representations For Speech And Text
View PDFAbstract:The quality of automatic speech recognition (ASR) is typically measured by word error rate (WER). WER estimation is a task aiming to predict the WER of an ASR system, given a speech utterance and a transcription. This task has gained increasing attention while advanced ASR systems are trained on large amounts of data. In this case, WER estimation becomes necessary in many scenarios, for example, selecting training data with unknown transcription quality or estimating the testing performance of an ASR system without ground truth transcriptions. Facing large amounts of data, the computation efficiency of a WER estimator becomes essential in practical applications. However, previous works usually did not consider it as a priority. In this paper, a Fast WER estimator (Fe-WER) using self-supervised learning representation (SSLR) is introduced. The estimator is built upon SSLR aggregated by average pooling. The results show that Fe-WER outperformed the e-WER3 baseline relatively by 19.69% and 7.16% on Ted-Lium3 in both evaluation metrics of root mean square error and Pearson correlation coefficient, respectively. Moreover, the estimation weighted by duration was 10.43% when the target was 10.88%. Lastly, the inference speed was about 4x in terms of a real-time factor.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.