Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 10 Oct 2023]
Title:Ultima: Robust and Tail-Optimal AllReduce for Distributed Deep Learning in the Cloud
View PDFAbstract:We present Ultima, a new collective-communication system for the cloud with bounded, predictable completion times for deep-learning jobs in the presence of varying computation (stragglers) and communication (congestion and gradient drops) variabilities. Ultima exploits the inherent resiliency and the stochastic nature of distributed deep-learning (DDL) training to work with approximated gradients, and provides an efficient balance between (tail) performance and the resulting accuracy of the trained models.
Exploiting this domain-specific characteristic of DDL, Ultima introduces (1) mechanisms (e.g., Transpose AllReduce, unreliable connection-oriented transport, and adaptive timeout) to improve the DDL jobs' tail execution time, and (2) strategies (e.g., Hadamard Transform) to mitigate the impact of gradient drops on model accuracy. Our evaluation shows that Ultima achieves 60% faster time-to-accuracy (TTA), on average, when operating in shared environments (e.g., public cloud), and is on par with existing algorithms (e.g., Ring-AllReduce) in dedicated environments (like HPC).
Submission history
From: Muhammad Shahbaz [view email][v1] Tue, 10 Oct 2023 20:25:56 UTC (1,287 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.