Computer Science > Computation and Language
[Submitted on 9 Oct 2023 (v1), last revised 28 Dec 2024 (this version, v2)]
Title:ReZG: Retrieval-Augmented Zero-Shot Counter Narrative Generation for Hate Speech
View PDF HTML (experimental)Abstract:The proliferation of hate speech (HS) on social media poses a serious threat to societal security. Automatic counter narrative (CN) generation, as an active strategy for HS intervention, has garnered increasing attention in recent years. Existing methods for automatically generating CNs mainly rely on re-training or fine-tuning pre-trained language models (PLMs) on human-curated CN corpora. Unfortunately, the annotation speed of CN corpora cannot keep up with the growth of HS targets, while generating specific and effective CNs for unseen targets remains a significant challenge for the model. To tackle this issue, we propose Retrieval-Augmented Zero-shot Generation (ReZG) to generate CNs with high-specificity for unseen targets. Specifically, we propose a multi-dimensional hierarchical retrieval method that integrates stance, semantics, and fitness, extending the retrieval metric from single dimension to multiple dimensions suitable for the knowledge that refutes HS. Then, we implement an energy-based constrained decoding mechanism that enables PLMs to use differentiable knowledge preservation, countering, and fluency constraint functions instead of in-target CNs as control signals for generation, thereby achieving zero-shot CN generation. With the above techniques, ReZG can integrate external knowledge flexibly and improve the specificity of CNs. Experimental results show that ReZG exhibits stronger generalization capabilities and outperforms strong baselines with significant improvements of 2.0%+ in the relevance and 4.5%+ in the countering success rate metrics.
Submission history
From: Jiang Shuyu [view email][v1] Mon, 9 Oct 2023 12:01:26 UTC (466 KB)
[v2] Sat, 28 Dec 2024 11:50:15 UTC (837 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.