Computer Science > Computation and Language
[Submitted on 3 Oct 2023 (v1), last revised 6 Jan 2024 (this version, v2)]
Title:ResidualTransformer: Residual Low-Rank Learning with Weight-Sharing for Transformer Layers
View PDF HTML (experimental)Abstract:Memory constraint of always-on devices is one of the major concerns when deploying speech processing models on these devices. While larger models trained with sufficiently large amount of data generally perform better, making them fit in the device memory is a demanding challenge. In this paper, we aim to reduce model size by reparameterizing model weights across Transformer encoder layers and assuming a special weight composition and structure. More specifically, inspired by ResNet and the more recent LoRA work, we propose an approach named ResidualTransformer, where each weight matrix in a Transformer layer comprises 1) a shared full-rank component with its adjacent layers, and 2) a unique low-rank component to itself. The low-rank matrices only account for a small amount of model size increase. In addition, we add diagonal weight matrices to improve modeling capacity of the low-rank matrices. Experiments of our 10k-hour speech recognition and speech translation tasks show that the Transformer encoder size can be reduced by ~3X with very slight performance degradation.
Submission history
From: Yiming Wang [view email][v1] Tue, 3 Oct 2023 23:31:48 UTC (51 KB)
[v2] Sat, 6 Jan 2024 23:41:15 UTC (52 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.