Computer Science > Computation and Language
[Submitted on 2 Oct 2023 (v1), last revised 16 Jul 2024 (this version, v2)]
Title:UltraFeedback: Boosting Language Models with Scaled AI Feedback
View PDF HTML (experimental)Abstract:Learning from human feedback has become a pivot technique in aligning large language models (LLMs) with human preferences. However, acquiring vast and premium human feedback is bottlenecked by time, labor, and human capability, resulting in small sizes or limited topics of current datasets. This further hinders feedback learning as well as alignment research within the open-source community. To address this issue, we explore how to go beyond human feedback and collect high-quality \textit{AI feedback} automatically for a scalable alternative. Specifically, we identify \textbf{scale and diversity} as the key factors for feedback data to take effect. Accordingly, we first broaden instructions and responses in both amount and breadth to encompass a wider range of user-assistant interactions. Then, we meticulously apply a series of techniques to mitigate annotation biases for more reliable AI feedback. We finally present \textsc{UltraFeedback}, a large-scale, high-quality, and diversified AI feedback dataset, which contains over 1 million GPT-4 feedback for 250k user-assistant conversations from various aspects. Built upon \textsc{UltraFeedback}, we align a LLaMA-based model by best-of-$n$ sampling and reinforcement learning, demonstrating its exceptional performance on chat benchmarks. Our work validates the effectiveness of scaled AI feedback data in constructing strong open-source chat language models, serving as a solid foundation for future feedback learning research. Our data and models are available at this https URL.
Submission history
From: Ganqu Cui [view email][v1] Mon, 2 Oct 2023 17:40:01 UTC (261 KB)
[v2] Tue, 16 Jul 2024 03:24:39 UTC (413 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.