Computer Science > Social and Information Networks
[Submitted on 2 Oct 2023 (v1), last revised 3 Apr 2024 (this version, v4)]
Title:HyperGraphDis: Leveraging Hypergraphs for Contextual and Social-Based Disinformation Detection
View PDF HTML (experimental)Abstract:In light of the growing impact of disinformation on social, economic, and political landscapes, accurate and efficient identification methods are increasingly critical. This paper introduces HyperGraphDis, a novel approach for detecting disinformation on Twitter that employs a hypergraph-based representation to capture (i) the intricate social structures arising from retweet cascades, (ii) relational features among users, and (iii) semantic and topical nuances. Evaluated on four Twitter datasets -- focusing on the 2016 U.S. Presidential election and the COVID-19 pandemic -- HyperGraphDis outperforms existing methods in both accuracy and computational efficiency, underscoring its effectiveness and scalability for tackling the challenges posed by disinformation dissemination. HyperGraphDis displays exceptional performance on a COVID-19-related dataset, achieving an impressive F1 score (weighted) of approximately 89.5%. This result represents a notable improvement of around 4% compared to the other state-of-the-art methods. Additionally, significant enhancements in computation time are observed for both model training and inference. In terms of model training, completion times are accelerated by a factor ranging from 2.3 to 7.6 compared to the second-best method across the four datasets. Similarly, during inference, computation times are 1.3 to 6.8 times faster than the state-of-the-art.
Submission history
From: Nikos Salamanos [view email][v1] Mon, 2 Oct 2023 11:42:28 UTC (332 KB)
[v2] Tue, 14 Nov 2023 17:09:25 UTC (332 KB)
[v3] Wed, 17 Jan 2024 13:54:24 UTC (384 KB)
[v4] Wed, 3 Apr 2024 13:12:36 UTC (476 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.