Computer Science > Robotics
[Submitted on 2 Oct 2023]
Title:Visual Temporal Fusion Based Free Space Segmentation for Autonomous Surface Vessels
View PDFAbstract:The use of Autonomous Surface Vessels (ASVs) is growing rapidly. For safe and efficient surface auto-driving, a reliable perception system is crucial. Such systems allow the vessels to sense their surroundings and make decisions based on the information gathered. During the perception process, free space segmentation is essential to distinguish the safe mission zone and segment the operational waterways. However, ASVs face particular challenges in free space segmentation due to nearshore reflection interference, complex water textures, and random motion vibrations caused by the water surface conditions. To deal with these challenges, we propose a visual temporal fusion based free space segmentation model to utilize the previous vision information. In addition, we also introduce a new evaluation procedure and a contour position based loss calculation function, which are more suitable for surface free space segmentation tasks. The proposed model and process are tested on a continuous video segmentation dataset and achieve both high-accuracy and robust results. The dataset is also made available along with this paper.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.