Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 29 Sep 2023]
Title:Parallel Computation of Multi-Slice Clustering of Third-Order Tensors
View PDFAbstract:Machine Learning approaches like clustering methods deal with massive datasets that present an increasing challenge. We devise parallel algorithms to compute the Multi-Slice Clustering (MSC) for 3rd-order tensors. The MSC method is based on spectral analysis of the tensor slices and works independently on each tensor mode. Such features fit well in the parallel paradigm via a distributed memory system. We show that our parallel scheme outperforms sequential computing and allows for the scalability of the MSC method.
Submission history
From: Dina Faneva Andriantsiory [view email][v1] Fri, 29 Sep 2023 16:38:51 UTC (410 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.