Mathematics > Logic
[Submitted on 27 Sep 2023 (v1), last revised 5 Aug 2024 (this version, v3)]
Title:The Complexity of Resilience Problems via Valued Constraint Satisfaction Problems
View PDF HTML (experimental)Abstract:Valued constraint satisfaction problems (VCSPs) constitute a large class of computational optimisation problems. It was shown recently that, over finite domains, every VCSP is in P or NP-complete, depending on the admitted cost functions. In this article, we study cost functions over countably infinite domains whose automorphisms form an oligomorphic permutation group. Our results include a hardness condition based on a generalisation of pp-constructability as known from classical CSPs and a polynomial-time tractability condition based on the concept of fractional polymorphisms. We then observe that the resilience problem for unions of conjunctive queries (UCQs) studied in database theory, under bag semantics, may be viewed as a special case of the VCSPs that we consider. We obtain a complexity dichotomy for the case of incidence-acyclic UCQs and exemplarily use our methods to determine the complexity of a query that had remained open in the literature. Further, we conjecture that our hardness and tractability conditions match for resilience problems for UCQs.
Submission history
From: Žaneta Semanišinová [view email][v1] Wed, 27 Sep 2023 13:41:00 UTC (153 KB)
[v2] Mon, 11 Dec 2023 07:51:35 UTC (155 KB)
[v3] Mon, 5 Aug 2024 08:12:49 UTC (292 KB)
Current browse context:
math.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.