Computer Science > Artificial Intelligence
[Submitted on 26 Sep 2023 (v1), last revised 8 Aug 2024 (this version, v2)]
Title:Learning NEAT Emergent Behaviors in Robot Swarms
View PDF HTML (experimental)Abstract:When researching robot swarms, many studies observe complex group behavior emerging from the individual agents' simple local actions. However, the task of learning an individual policy to produce a desired group behavior remains a challenging problem. We present a method of training distributed robotic swarm algorithms to produce emergent behavior. Inspired by the biological evolution of emergent behavior in animals, we use an evolutionary algorithm to train a population of individual behaviors to produce a desired group behavior. We perform experiments using simulations of the Georgia Tech Miniature Autonomous Blimps (GT-MABs) aerial robotics platforms conducted in the CoppeliaSim simulator. Additionally, we test on simulations of Anki Vector robots to display our algorithm's effectiveness on various modes of actuation. We evaluate our algorithm on various tasks where a somewhat complex group behavior is required for success. These tasks include an Area Coverage task and a Wall Climb task. We compare behaviors evolved using our algorithm against designed policies, which we create in order to exhibit the emergent behaviors we desire.
Submission history
From: Pranav Rajbhandari [view email][v1] Tue, 26 Sep 2023 04:40:52 UTC (21,696 KB)
[v2] Thu, 8 Aug 2024 21:57:33 UTC (21,698 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.