Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Sep 2023 (v1), last revised 21 Jul 2024 (this version, v3)]
Title:USL-Net: Uncertainty Self-Learning Network for Unsupervised Skin Lesion Segmentation
View PDF HTML (experimental)Abstract:Unsupervised skin lesion segmentation offers several benefits, including conserving expert human resources, reducing discrepancies due to subjective human labeling, and adapting to novel environments. However, segmenting dermoscopic images without manual labeling guidance presents significant challenges due to dermoscopic image artifacts such as hair noise, blister noise, and subtle edge differences. To address these challenges, we introduce an innovative Uncertainty Self-Learning Network (USL-Net) designed for skin lesion segmentation. The USL-Net can effectively segment a range of lesions, eliminating the need for manual labeling guidance. Initially, features are extracted using contrastive learning, followed by the generation of Class Activation Maps (CAMs) as saliency maps using these features. The different CAM locations correspond to the importance of the lesion region based on their saliency. High-saliency regions in the map serve as pseudo-labels for lesion regions while low-saliency regions represent the background. However, intermediate regions can be hard to classify, often due to their proximity to lesion edges or interference from hair or blisters. Rather than risk potential pseudo-labeling errors or learning confusion by forcefully classifying these regions, we consider them as uncertainty regions, exempting them from pseudo-labeling and allowing the network to self-learn. Further, we employ connectivity detection and centrality detection to refine foreground pseudo-labels and reduce noise-induced errors. The application of cycle refining enhances performance further. Our method underwent thorough experimental validation on the ISIC-2017, ISIC-2018, and PH2 datasets, demonstrating that its performance is on par with weakly supervised and supervised methods, and exceeds that of other existing unsupervised methods.
Submission history
From: Xiaofan Li [view email][v1] Sat, 23 Sep 2023 07:08:57 UTC (6,282 KB)
[v2] Wed, 22 Nov 2023 10:14:04 UTC (6,201 KB)
[v3] Sun, 21 Jul 2024 01:46:08 UTC (5,911 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.