Computer Science > Information Retrieval
[Submitted on 22 Sep 2023]
Title:Modeling Spatiotemporal Periodicity and Collaborative Signal for Local-Life Service Recommendation
View PDFAbstract:Online local-life service platforms provide services like nearby daily essentials and food delivery for hundreds of millions of users. Different from other types of recommender systems, local-life service recommendation has the following characteristics: (1) spatiotemporal periodicity, which means a user's preferences for items vary from different locations at different times. (2) spatiotemporal collaborative signal, which indicates similar users have similar preferences at specific locations and times. However, most existing methods either focus on merely the spatiotemporal contexts in sequences, or model the user-item interactions without spatiotemporal contexts in graphs. To address this issue, we design a new method named SPCS in this paper. Specifically, we propose a novel spatiotemporal graph transformer (SGT) layer, which explicitly encodes relative spatiotemporal contexts, and aggregates the information from multi-hop neighbors to unify spatiotemporal periodicity and collaborative signal. With extensive experiments on both public and industrial datasets, this paper validates the state-of-the-art performance of SPCS.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.