Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 20 Sep 2023]
Title:Memory-Anonymous Starvation-Free Mutual Exclusion: Possibility and Impossibility Results
View PDFAbstract:In an anonymous shared memory system, all inter-process communications are via shared objects; however, unlike in standard systems, there is no a priori agreement between processes on the names of shared objects [14,15]. Furthermore, the algorithms are required to be symmetric; that is, the processes should execute precisely the same code, and the only way to distinguish processes is by comparing identifiers for equality. For such a system, read/write registers are called anonymous registers. It is known that symmetric deadlock-free mutual exclusion is solvable for any finite number of processes using anonymous registers [1]. The main question left open in [14,15] is the existence of starvation-free mutual exclusion algorithms for two or more processes. We resolve this open question for memoryless algorithms, in which a process that tries to enter its critical section does not use any information about its previous attempts. Almost all known mutual exclusion algorithms are memoryless. We show that (1) there is a symmetric memoryless starvation-free mutual exclusion algorithm for two processes using $m \geq 7$ anonymous registers if and only if $m$ is odd; and (2) there is no symmetric memoryless starvation-free mutual exclusion algorithm for $n\geq 3$ processes using (any number of) anonymous registers. Our impossibility result is the only example of a system with fault-free processes, where global progress (i.e., deadlock-freedom) can be ensured, while individual progress to each process (i.e., starvation-freedom) cannot. It complements a known result for systems with failure-prone processes, that there are objects with lock-free implementations but without wait-free implementations [2,5].
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.