Computer Science > Robotics
[Submitted on 21 Sep 2023 (v1), last revised 26 Jul 2024 (this version, v2)]
Title:Person Re-Identification for Robot Person Following with Online Continual Learning
View PDF HTML (experimental)Abstract:Robot person following (RPF) is a crucial capability in human-robot interaction (HRI) applications, allowing a robot to persistently follow a designated person. In practical RPF scenarios, the person can often be occluded by other objects or people. Consequently, it is necessary to re-identify the person when he/she reappears within the robot's field of view. Previous person re-identification (ReID) approaches to person following rely on a fixed feature extractor. Such an approach often fails to generalize to different viewpoints and lighting conditions in practical RPF environments. In other words, it suffers from the so-called domain shift problem where it cannot re-identify the person when his re-appearance is out of the domain modeled by the fixed feature extractor. To mitigate this problem, we propose a ReID framework for RPF where we use a feature extractor that is optimized online with both short-term and long-term experiences (i.e., recently and previously observed samples during RPF) using the online continual learning (OCL) framework. The long-term experiences are maintained by a memory manager to enable OCL to update the feature extractor. Our experiments demonstrate that even in the presence of severe appearance changes and distractions from visually similar people, the proposed method can still re-identify the person more accurately than the state-of-the-art methods.
Submission history
From: Hanjing Ye [view email][v1] Thu, 21 Sep 2023 02:01:38 UTC (2,846 KB)
[v2] Fri, 26 Jul 2024 09:07:01 UTC (3,761 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.