Computer Science > Information Retrieval
[Submitted on 19 Sep 2023]
Title:Towards Measuring Fairness in Grid Layout in Recommender Systems
View PDFAbstract:There has been significant research in the last five years on ensuring the providers of items in a recommender system are treated fairly, particularly in terms of the exposure the system provides to their work through its results. However, the metrics developed to date have all been designed and tested for linear ranked lists. It is unknown whether and how existing fair ranking metrics for linear layouts can be applied to grid-based displays. Moreover, depending on the device (phone, tab, or laptop) users use to interact with systems, column size is adjusted using column reduction approaches in a grid-view. The visibility or exposure of recommended items in grid layouts varies based on column sizes and column reduction approaches as well. In this paper, we extend existing fair ranking concepts and metrics to study provider-side group fairness in grid layouts, present an analysis of the behavior of these grid adaptations of fair ranking metrics, and study how their behavior changes across different grid ranking layout designs and geometries. We examine how fairness scores change with different ranking layouts to yield insights into (1) the consistency of fair ranking measurements across layouts; (2) whether rankings optimized for fairness in a linear ranking remain fair when the results are displayed in a grid; and (3) the impact of column reduction approaches to support different device geometries on fairness measurement. This work highlights the need to use layout-specific user attention models when measuring fairness of rankings, and provide practitioners with a first set of insights on what to expect when translating existing fair ranking metrics to the grid layouts in wide use today.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.