Computer Science > Machine Learning
[Submitted on 20 Sep 2023 (v1), last revised 1 Jun 2024 (this version, v2)]
Title:PAGER: A Framework for Failure Analysis of Deep Regression Models
View PDF HTML (experimental)Abstract:Safe deployment of AI models requires proactive detection of failures to prevent costly errors. To this end, we study the important problem of detecting failures in deep regression models. Existing approaches rely on epistemic uncertainty estimates or inconsistency w.r.t the training data to identify failure. Interestingly, we find that while uncertainties are necessary they are insufficient to accurately characterize failure in practice. Hence, we introduce PAGER (Principled Analysis of Generalization Errors in Regressors), a framework to systematically detect and characterize failures in deep regressors. Built upon the principle of anchored training in deep models, PAGER unifies both epistemic uncertainty and complementary manifold non-conformity scores to accurately organize samples into different risk regimes.
Submission history
From: Jayaraman J. Thiagarajan [view email][v1] Wed, 20 Sep 2023 00:37:35 UTC (4,341 KB)
[v2] Sat, 1 Jun 2024 18:55:12 UTC (4,940 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.