Computer Science > Computation and Language
[Submitted on 11 Sep 2023 (v1), last revised 8 Oct 2024 (this version, v5)]
Title:Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) have demonstrated exceptional proficiency in language-related tasks, but their deployment poses significant challenges due to substantial memory and storage requirements. Weight-only quantization has emerged as a promising solution, significantly reducing memory and storage needs without sacrificing too much performance. In this study, we introduce SignRound, a method that leverages signed gradient descent (SignSGD) to optimize rounding values and weight clipping in just 200 steps. SignRound integrates the advantages of Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ), delivering exceptional results across 2 to 4 bits while minimizing tuning costs and avoiding additional inference overhead. For example, SignRound achieved absolute average accuracy improvements ranging from 6.91% to 33.22% at 2bits, as measured by the average zero-shot accuracy across 11 tasks. It also demonstrates strong generalization in recent models, achieving near-lossless 4-bit quantization in most scenarios. The source code is publicly available at this https URL.
Submission history
From: Wenhua Cheng [view email][v1] Mon, 11 Sep 2023 14:58:23 UTC (6,682 KB)
[v2] Thu, 28 Sep 2023 09:05:57 UTC (8,941 KB)
[v3] Fri, 17 May 2024 09:12:19 UTC (4,903 KB)
[v4] Thu, 23 May 2024 10:43:09 UTC (4,903 KB)
[v5] Tue, 8 Oct 2024 02:02:35 UTC (10,154 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.