Computer Science > Computation and Language
[Submitted on 8 Sep 2023]
Title:Unsupervised Multi-document Summarization with Holistic Inference
View PDFAbstract:Multi-document summarization aims to obtain core information from a collection of documents written on the same topic. This paper proposes a new holistic framework for unsupervised multi-document extractive summarization. Our method incorporates the holistic beam search inference method associated with the holistic measurements, named Subset Representative Index (SRI). SRI balances the importance and diversity of a subset of sentences from the source documents and can be calculated in unsupervised and adaptive manners. To demonstrate the effectiveness of our method, we conduct extensive experiments on both small and large-scale multi-document summarization datasets under both unsupervised and adaptive settings. The proposed method outperforms strong baselines by a significant margin, as indicated by the resulting ROUGE scores and diversity measures. Our findings also suggest that diversity is essential for improving multi-document summary performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.