Computer Science > Cryptography and Security
[Submitted on 7 Sep 2023 (v1), last revised 2 Sep 2024 (this version, v2)]
Title:Neural Dehydration: Effective Erasure of Black-box Watermarks from DNNs with Limited Data
View PDF HTML (experimental)Abstract:To protect the intellectual property of well-trained deep neural networks (DNNs), black-box watermarks, which are embedded into the prediction behavior of DNN models on a set of specially-crafted samples and extracted from suspect models using only API access, have gained increasing popularity in both academy and industry. Watermark robustness is usually implemented against attackers who steal the protected model and obfuscate its parameters for watermark removal. However, current robustness evaluations are primarily performed under moderate attacks or unrealistic settings. Existing removal attacks could only crack a small subset of the mainstream black-box watermarks, and fall short in four key aspects: incomplete removal, reliance on prior knowledge of the watermark, performance degradation, and high dependency on data.
In this paper, we propose a watermark-agnostic removal attack called \textsc{Neural Dehydration} (\textit{abbrev.} \textsc{Dehydra}), which effectively erases all ten mainstream black-box watermarks from DNNs, with only limited or even no data dependence. In general, our attack pipeline exploits the internals of the protected model to recover and unlearn the watermark message. We further design target class detection and recovered sample splitting algorithms to reduce the utility loss and achieve data-free watermark removal on five of the watermarking schemes. We conduct comprehensive evaluation of \textsc{Dehydra} against ten mainstream black-box watermarks on three benchmark datasets and DNN architectures. Compared with existing removal attacks, \textsc{Dehydra} achieves strong removal effectiveness across all the covered watermarks, preserving at least $90\%$ of the stolen model utility, under the data-limited settings, i.e., less than $2\%$ of the training data or even data-free.
Submission history
From: Yifan Lu [view email][v1] Thu, 7 Sep 2023 03:16:03 UTC (3,601 KB)
[v2] Mon, 2 Sep 2024 11:01:35 UTC (8,193 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.