Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Sep 2023]
Title:On the use of Mahalanobis distance for out-of-distribution detection with neural networks for medical imaging
View PDFAbstract:Implementing neural networks for clinical use in medical applications necessitates the ability for the network to detect when input data differs significantly from the training data, with the aim of preventing unreliable predictions. The community has developed several methods for out-of-distribution (OOD) detection, within which distance-based approaches - such as Mahalanobis distance - have shown potential. This paper challenges the prevailing community understanding that there is an optimal layer, or combination of layers, of a neural network for applying Mahalanobis distance for detection of any OOD pattern. Using synthetic artefacts to emulate OOD patterns, this paper shows the optimum layer to apply Mahalanobis distance changes with the type of OOD pattern, showing there is no one-fits-all solution. This paper also shows that separating this OOD detector into multiple detectors at different depths of the network can enhance the robustness for detecting different OOD patterns. These insights were validated on real-world OOD tasks, training models on CheXpert chest X-rays with no support devices, then using scans with unseen pacemakers (we manually labelled 50% of CheXpert for this research) and unseen sex as OOD cases. The results inform best-practices for the use of Mahalanobis distance for OOD detection. The manually annotated pacemaker labels and the project's code are available at: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.