Computer Science > Artificial Intelligence
[Submitted on 31 Aug 2023]
Title:Detecting Evidence of Organization in groups by Trajectories
View PDFAbstract:Effective detection of organizations is essential for fighting crime and maintaining public safety, especially considering the limited human resources and tools to deal with each group that exhibits co-movement patterns. This paper focuses on solving the Network Structure Inference (NSI) challenge. Thus, we introduce two new approaches to detect network structure inferences based on agent trajectories. The first approach is based on the evaluation of graph entropy, while the second considers the quality of clustering indices. To evaluate the effectiveness of the new approaches, we conducted experiments using four scenario simulations based on the animal kingdom, available on the NetLogo platform: Ants, Wolf Sheep Predation, Flocking, and Ant Adaptation. Furthermore, we compare the results obtained with those of an approach previously proposed in the literature, applying all methods to simulations of the NetLogo platform. The results demonstrate that our new detection approaches can more clearly identify the inferences of organizations or networks in the simulated scenarios.
Submission history
From: Thayanne França Da Silva [view email][v1] Thu, 31 Aug 2023 23:57:02 UTC (988 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.