Computer Science > Software Engineering
[Submitted on 28 Aug 2023]
Title:Experimental Evaluation of a Checklist-Based Inspection Technique to Verify the Compliance of Software Systems with the Brazilian General Data Protection Law
View PDFAbstract:Recent laws to ensure the security and protection of personal data establish new software requirements. Consequently, new technologies are needed to guarantee software quality under the perception of privacy and protection of personal data. Therefore, we created a checklist-based inspection technique (LGPDCheck) to support the identification of defects in software artifacts based on the principles established by the Brazilian General Data Protection Law (LGPD). Objective/Aim: To evaluate the effectiveness and efficiency of LGPDCheck for verifying privacy and data protection (PDP) in software artifacts compared to ad-hoc techniques. Method: To assess LGPDCheck and ad-hoc techniques experimentally through a quasi-experiment (two factors, five treatments). The data will be collected from IoT-based health software systems built by software engineering students from the Federal University of Rio de Janeiro. The data analyses will compare results from ad-hoc and LGPDCheck inspections, the participant's effectiveness and efficiency in each trial, defects' variance and standard deviation, and time spent with the reviews. The data will be screened for outliers, and normality and homoscedasticity will be verified using the Shapiro-Wilk and Levene tests. Nonparametric or parametric tests, such as the Wilcoxon or Student's t-tests, will be applied as appropriate.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.