Computer Science > Machine Learning
[Submitted on 28 Aug 2023 (v1), last revised 11 Mar 2024 (this version, v2)]
Title:Task-Aware Machine Unlearning and Its Application in Load Forecasting
View PDF HTML (experimental)Abstract:Data privacy and security have become a non-negligible factor in load forecasting. Previous researches mainly focus on training stage enhancement. However, once the model is trained and deployed, it may need to `forget' (i.e., remove the impact of) part of training data if the these data are found to be malicious or as requested by the data owner. This paper introduces the concept of machine unlearning which is specifically designed to remove the influence of part of the dataset on an already trained forecaster. However, direct unlearning inevitably degrades the model generalization ability. To balance between unlearning completeness and model performance, a performance-aware algorithm is proposed by evaluating the sensitivity of local model parameter change using influence function and sample re-weighting. Furthermore, we observe that the statistical criterion such as mean squared error, cannot fully reflect the operation cost of the downstream tasks in power system. Therefore, a task-aware machine unlearning is proposed whose objective is a trilevel optimization with dispatch and redispatch problems considered. We theoretically prove the existence of the gradient of such an objective, which is key to re-weighting the remaining samples. We tested the unlearning algorithms on linear, CNN, and MLP-Mixer based load forecasters with a realistic load dataset. The simulation demonstrates the balance between unlearning completeness and operational cost. All codes can be found at this https URL.
Submission history
From: Wangkun Xu [view email][v1] Mon, 28 Aug 2023 08:50:12 UTC (2,714 KB)
[v2] Mon, 11 Mar 2024 11:19:32 UTC (2,373 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.