Computer Science > Machine Learning
[Submitted on 24 Aug 2023]
Title:Don't blame Dataset Shift! Shortcut Learning due to Gradients and Cross Entropy
View PDFAbstract:Common explanations for shortcut learning assume that the shortcut improves prediction under the training distribution but not in the test distribution. Thus, models trained via the typical gradient-based optimization of cross-entropy, which we call default-ERM, utilize the shortcut. However, even when the stable feature determines the label in the training distribution and the shortcut does not provide any additional information, like in perception tasks, default-ERM still exhibits shortcut learning. Why are such solutions preferred when the loss for default-ERM can be driven to zero using the stable feature alone? By studying a linear perception task, we show that default-ERM's preference for maximizing the margin leads to models that depend more on the shortcut than the stable feature, even without overparameterization. This insight suggests that default-ERM's implicit inductive bias towards max-margin is unsuitable for perception tasks. Instead, we develop an inductive bias toward uniform margins and show that this bias guarantees dependence only on the perfect stable feature in the linear perception task. We develop loss functions that encourage uniform-margin solutions, called margin control (MARG-CTRL). MARG-CTRL mitigates shortcut learning on a variety of vision and language tasks, showing that better inductive biases can remove the need for expensive two-stage shortcut-mitigating methods in perception tasks.
Submission history
From: Aahlad Manas Puli [view email][v1] Thu, 24 Aug 2023 04:39:25 UTC (10,114 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.