Computer Science > Machine Learning
[Submitted on 24 Aug 2023]
Title:A Co-training Approach for Noisy Time Series Learning
View PDFAbstract:In this work, we focus on robust time series representation learning. Our assumption is that real-world time series is noisy and complementary information from different views of the same time series plays an important role while analyzing noisy input. Based on this, we create two views for the input time series through two different encoders. We conduct co-training based contrastive learning iteratively to learn the encoders. Our experiments demonstrate that this co-training approach leads to a significant improvement in performance. Especially, by leveraging the complementary information from different views, our proposed TS-CoT method can mitigate the impact of data noise and corruption. Empirical evaluations on four time series benchmarks in unsupervised and semi-supervised settings reveal that TS-CoT outperforms existing methods. Furthermore, the representations learned by TS-CoT can transfer well to downstream tasks through fine-tuning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.