Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Aug 2023 (v1), last revised 7 Jun 2024 (this version, v2)]
Title:Real-time Monocular Depth Estimation on Embedded Systems
View PDF HTML (experimental)Abstract:Depth sensing is of paramount importance for unmanned aerial and autonomous vehicles. Nonetheless, contemporary monocular depth estimation methods employing complex deep neural networks within Convolutional Neural Networks are inadequately expedient for real-time inference on embedded platforms. This paper endeavors to surmount this challenge by proposing two efficient and lightweight architectures, RT-MonoDepth and RT-MonoDepth-S, thereby mitigating computational complexity and latency. Our methodologies not only attain accuracy comparable to prior depth estimation methods but also yield faster inference speeds. Specifically, RT-MonoDepth and RT-MonoDepth-S achieve frame rates of 18.4&30.5 FPS on NVIDIA Jetson Nano and 253.0&364.1 FPS on Jetson AGX Orin, utilizing a single RGB image of resolution 640x192. The experimental results underscore the superior accuracy and faster inference speed of our methods in comparison to existing fast monocular depth estimation methodologies on the KITTI dataset.
Submission history
From: Cheng Feng [view email][v1] Mon, 21 Aug 2023 08:59:59 UTC (1,246 KB)
[v2] Fri, 7 Jun 2024 09:09:41 UTC (1,182 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.