Computer Science > Computation and Language
[Submitted on 16 Aug 2023 (v1), last revised 22 Feb 2024 (this version, v2)]
Title:TEST: Text Prototype Aligned Embedding to Activate LLM's Ability for Time Series
View PDF HTML (experimental)Abstract:This work summarizes two ways to accomplish Time-Series (TS) tasks in today's Large Language Model (LLM) context: LLM-for-TS (model-centric) designs and trains a fundamental large model, or fine-tunes a pre-trained LLM for TS data; TS-for-LLM (data-centric) converts TS into a model-friendly representation to enable the pre-trained LLM to handle TS data. Given the lack of data, limited resources, semantic context requirements, and so on, this work focuses on TS-for-LLM, where we aim to activate LLM's ability for TS data by designing a TS embedding method suitable for LLM. The proposed method is named TEST. It first tokenizes TS, builds an encoder to embed TS via instance-wise, feature-wise, and text-prototype-aligned contrast, where the TS embedding space is aligned to LLM embedding layer space, then creates soft prompts to make LLM more open to that embeddings, and finally implements TS tasks using the frozen LLM. We also demonstrate the feasibility of TS-for-LLM through theory and experiments. Experiments are carried out on TS classification, forecasting, and representation tasks using eight frozen LLMs with various structures and sizes. The results show that the pre-trained LLM with TEST strategy can achieve better or comparable performance than today's SOTA TS models and offer benefits for few-shot and generalization. By treating LLM as the pattern machine, TEST can endow LLM's ability to process TS data without compromising language ability. We hope that this study will serve as a foundation for future work to support TS+LLM progress.
Submission history
From: Chenxi Sun [view email][v1] Wed, 16 Aug 2023 09:16:02 UTC (5,525 KB)
[v2] Thu, 22 Feb 2024 02:03:42 UTC (5,607 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.