Computer Science > Human-Computer Interaction
[Submitted on 15 Aug 2023]
Title:Synergi: A Mixed-Initiative System for Scholarly Synthesis and Sensemaking
View PDFAbstract:Efficiently reviewing scholarly literature and synthesizing prior art are crucial for scientific progress. Yet, the growing scale of publications and the burden of knowledge make synthesis of research threads more challenging than ever. While significant research has been devoted to helping scholars interact with individual papers, building research threads scattered across multiple papers remains a challenge. Most top-down synthesis (and LLMs) make it difficult to personalize and iterate on the output, while bottom-up synthesis is costly in time and effort. Here, we explore a new design space of mixed-initiative workflows. In doing so we develop a novel computational pipeline, Synergi, that ties together user input of relevant seed threads with citation graphs and LLMs, to expand and structure them, respectively. Synergi allows scholars to start with an entire threads-and-subthreads structure generated from papers relevant to their interests, and to iterate and customize on it as they wish. In our evaluation, we find that Synergi helps scholars efficiently make sense of relevant threads, broaden their perspectives, and increases their curiosity. We discuss future design implications for thread-based, mixed-initiative scholarly synthesis support tools.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.