Computer Science > Software Engineering
[Submitted on 9 Aug 2023 (v1), last revised 26 Jun 2024 (this version, v2)]
Title:Machine Learning-Enabled Software and System Architecture Frameworks
View PDF HTML (experimental)Abstract:Various architecture frameworks for software, systems, and enterprises have been proposed in the literature. They identified several stakeholders and defined modeling perspectives, architecture viewpoints, and views to frame and address stakeholder concerns. However, the stakeholders with data science and Machine Learning (ML) related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks. Only this way can we envision a holistic system architecture description of an ML-enabled system. Note that the ML component behavior and functionalities are special and should be distinguished from traditional software system behavior and functionalities. The main reason is that the actual functionality should be inferred from data instead of being specified at design time. Additionally, the structural models of ML components, such as ML model architectures, are typically specified using different notations and formalisms from what the Software Engineering (SE) community uses for software structural models. Yet, these two aspects, namely ML and non-ML, are becoming so intertwined that it necessitates an extension of software architecture frameworks and modeling practices toward supporting ML-enabled system architectures. In this paper, we address this gap through an empirical study using an online survey instrument. We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
Submission history
From: Armin Moin [view email][v1] Wed, 9 Aug 2023 21:54:34 UTC (449 KB)
[v2] Wed, 26 Jun 2024 22:09:04 UTC (414 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.