Computer Science > Computers and Society
[Submitted on 2 Aug 2023]
Title:Dual Governance: The intersection of centralized regulation and crowdsourced safety mechanisms for Generative AI
View PDFAbstract:Generative Artificial Intelligence (AI) has seen mainstream adoption lately, especially in the form of consumer-facing, open-ended, text and image generating models. However, the use of such systems raises significant ethical and safety concerns, including privacy violations, misinformation and intellectual property theft. The potential for generative AI to displace human creativity and livelihoods has also been under intense scrutiny. To mitigate these risks, there is an urgent need of policies and regulations responsible and ethical development in the field of generative AI. Existing and proposed centralized regulations by governments to rein in AI face criticisms such as not having sufficient clarity or uniformity, lack of interoperability across lines of jurisdictions, restricting innovation, and hindering free market competition. Decentralized protections via crowdsourced safety tools and mechanisms are a potential alternative. However, they have clear deficiencies in terms of lack of adequacy of oversight and difficulty of enforcement of ethical and safety standards, and are thus not enough by themselves as a regulation mechanism. We propose a marriage of these two strategies via a framework we call Dual Governance. This framework proposes a cooperative synergy between centralized government regulations in a U.S. specific context and safety mechanisms developed by the community to protect stakeholders from the harms of generative AI. By implementing the Dual Governance framework, we posit that innovation and creativity can be promoted while ensuring safe and ethical deployment of generative AI.
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.