Computer Science > Databases
[Submitted on 31 Jul 2023]
Title:ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Join Algorithms via Reinforcement Learning
View PDFAbstract:The performance of worst-case optimal join algorithms depends on the order in which the join attributes are processed. Selecting good orders before query execution is hard, due to the large space of possible orders and unreliable execution cost estimates in case of data skew or data correlation. We propose ADOPT, a query engine that combines adaptive query processing with a worst-case optimal join algorithm, which uses an order on the join attributes instead of a join order on relations. ADOPT divides query execution into episodes in which different attribute orders are tried. Based on run time feedback on attribute order performance, ADOPT converges quickly to near-optimal orders. It avoids redundant work across different orders via a novel data structure, keeping track of parts of the join input that have been successfully processed. It selects attribute orders to try via reinforcement learning, balancing the need for exploring new orders with the desire to exploit promising orders. In experiments with various data sets and queries, it outperforms baselines, including commercial and open-source systems using worst-case optimal join algorithms, whenever queries become complex and therefore difficult to optimize.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.