Electrical Engineering and Systems Science > Systems and Control
[Submitted on 28 Jul 2023]
Title:Control-mode as a Grid Service in Software-defined Power Grids: GFL vs GFM
View PDFAbstract:In power systems with high penetration of power electronics, grid-forming control is proposed to replace traditional Grid-Following Converter (GFL) in order to improve the overall system strength and resist small-signal instability in weak grids by directly forming the terminal voltage. However, sufficient headroom of both active and reactive power must be made available for Grid-Forming Converter (GFM) to operate, potentially leading to sub-optimal operation in steady states. This presents a new research problem to optimally allocate between GFM and GFL to balance the ability of GFMs to improve the grid strength and the potential economic loss resulting from reserved headroom. An optimization framework under software-defined grids is proposed, for the first time, to dynamically determine the optimal allocation of GFMs and GFLs in power systems at each time step of system scheduling according to system conditions, which ensures both system stability and minimum operational cost. To achieve this, the system scheduling model is expanded to simultaneously consider the constraints related to active and reactive power reserves for GFMs, as well as the system level stability. Case studies conducted on the modified IEEE 30-bus system demonstrate significant economic benefits in that the optimal proportion of GFMs in the power system can be dynamically determined while ensuring power reserve and grid stability constraints.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.