Computer Science > Sound
[Submitted on 28 Jul 2023 (v1), last revised 18 Dec 2023 (this version, v3)]
Title:Minimally-Supervised Speech Synthesis with Conditional Diffusion Model and Language Model: A Comparative Study of Semantic Coding
View PDF HTML (experimental)Abstract:Recently, there has been a growing interest in text-to-speech (TTS) methods that can be trained with minimal supervision by combining two types of discrete speech representations and using two sequence-to-sequence tasks to decouple TTS. However, existing methods suffer from three problems: the high dimensionality and waveform distortion of discrete speech representations, the prosodic averaging problem caused by the duration prediction model in non-autoregressive frameworks, and the information redundancy and dimension explosion problems of existing semantic encoding methods. To address these problems, three progressive methods are proposed. First, we propose Diff-LM-Speech, an autoregressive structure consisting of a language model and diffusion models, which models the semantic embedding into the mel-spectrogram based on a diffusion model to achieve higher audio quality. We also introduce a prompt encoder structure based on a variational autoencoder and a prosody bottleneck to improve prompt representation ability. Second, we propose Tetra-Diff-Speech, a non-autoregressive structure consisting of four diffusion model-based modules that design a duration diffusion model to achieve diverse prosodic expressions. Finally, we propose Tri-Diff-Speech, a non-autoregressive structure consisting of three diffusion model-based modules that verify the non-necessity of existing semantic encoding models and achieve the best results. Experimental results show that our proposed methods outperform baseline methods. We provide a website with audio samples.
Submission history
From: Chunyu Qiang [view email][v1] Fri, 28 Jul 2023 11:20:23 UTC (875 KB)
[v2] Fri, 1 Sep 2023 12:16:20 UTC (1,292 KB)
[v3] Mon, 18 Dec 2023 12:48:01 UTC (1,842 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.